翻訳と辞書
Words near each other
・ Orbital process of palatine bone
・ Orbital process of the zygomatic bone
・ Orbital prosthesis
・ Orbital Railway Line
・ Orbital replacement unit
・ Orbital resonance
・ Orbital Resonance (novel)
・ Orbital ring
・ Orbital Sciences Corporation
・ Orbital Sciences X-34
・ Orbital septum
・ Orbital Space Plane Program
・ Orbital spaceflight
・ Orbital speed
・ Orbital Stability
Orbital stability
・ Orbital state vectors
・ Orbital station-keeping
・ Orbital stretch wrapping
・ Orbital sulcus
・ Orbital surface
・ Orbital Technologies Commercial Space Station
・ Orbital Test Satellite
・ Orbital tuning
・ Orbital velocity
・ Orbital welding
・ Orbital x-ray
・ Orbital-free density functional theory
・ Orbitalis muscle
・ Orbitals (album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Orbital stability : ウィキペディア英語版
Orbital stability
In mathematical physics or theory of partial differential equations, the solitary wave solution of the form u(x,t)=e^\phi(x)\, is said to be orbitally stable if any solution with the initial data sufficiently close to \phi(x)\, forever remains in a given small neighborhood of the trajectory of e^\phi(x)\,.
==Formal definition==
Formal definition is as follows.
Let us consider the dynamical system
:
i\frac=A(u),
\qquad
u(t)\in X,
\quad t\in\R,

with X\, a Banach space over \C\,,
and A\,:X\to X.
We assume that the system is
\mathrm(1)\,-invariant,
so that
A(e^u)=e^A(u)\, for any u\in X\,
and any s\in\R\,.
Assume that \omega \phi=A(\phi)\,,
so that u(t)=e^\phi\, is a solution to the dynamical system.
We call such solution a solitary wave.
We say that the solitary wave e^\phi\,
is orbitally stable if for any \epsilon>0\, there is \delta>0\,
such that for any v_0\in X with \Vert \phi-v_0\Vert_X<\delta\,
there is a solution v(t)\, defined for all t\ge 0
such that v(0)=v_0\,,
and such that this solution satisfies
:
\sup_\inf_\Vert v(t)-e^\phi\Vert_X<\epsilon.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Orbital stability」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.